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Abstract

The present study investigated the effect of a single, anesthetic dose of ketamine, a noncompetitive N-methyl-D-aspartate (NMDA)

glutamate receptor antagonist, on behavioral despair, an animal model of depression. Separate groups of male Wistar rats injected with an

anesthetic dose of ketamine (160 mg/kg ip) and tested 3, 7, or 10 days later showed significantly less immobility in the second of two forced-

swim tests compared to saline-injected controls. Ketamine- and saline-treated animals did not differ significantly in the swim tests with

respect to other behavioral measures, namely diving, jumping, and head shakes. The present findings point to an ameliorative effect of

ketamine on behavioral despair and support the view that NMDA antagonists may have a beneficial effect on depression. D 2002 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Ketamine, a dissociative anesthetic, is a noncompetitiveN-

methyl-D-aspartate (NMDA) glutamate receptor antagonist

(Kohrs andDurieux, 1998;White et al., 1982).Administration

of ketamine and relatedNMDAantagonists has been shown to

have a broad range of biochemical and behavioral effects in

humans (Adler et al.,1998; Krystal et al., 1994; Moretti et al.,

1984; White et al., 1982) and animals (Adamec et al., 1999;

Aguado et al., 1994; Duncan et al., 1998; Dunn et al., 1989;

Hammer and Herkenham, 1983; Lannes et al., 1991; Mickley

et al., 1998; Verma and Moghaddam, 1996; Yamamoto et al.,

1997). While these studies have mostly assessed short-term

effects of subanesthetic doses of ketamine or related com-

pounds, experiments in our laboratory have indicated a long-

term effect of an anesthetic dose of ketamine in rats subjected

to forced-swim tests in the behavioral despair model of

depression (Porsolt et al., 1977, 1978). We found that sham-

operated animals subjected to forced-swim tests approxi-

mately a week after ketamine anesthesia showed resistance

to behavioral despair in that they did not display significantly

increased immobility in the second swimming test.

Our findings seemed to warrant further study in that

investigating the effect of ketamine on forced-swimming

tests may shed light on the mechanism involved in the

behavioral despair and may provide evidence for the

potential beneficial effects of ketamine. NMDA receptors

are implicated in the pathophysiology and NMDA antag-

onists may aid in the pharmacotherapy of depression (Papp

and Moryl, 1994; Skolnick et al., 1996; Trullas and

Skolnick, 1990). Furthermore, since ketamine is used in

human (Reich and Silvay, 1989) and animal anesthesia

(Van Pelt, 1977), it may be important to investigate its

long-term effects on behavior. The following study there-

fore assessed the long-term effect of an anesthetic dose of

ketamine in behavioral despair model of depression. The

model, originally developed by Porsolt et al. (1977, 1978)

is based on two forced-swim tests separated by 24 h. Rats

display longer immobility in the second swim test com-

pared to the first test.

2. Materials and methods

2.1. Subjects

A total of 55 male Wistar rats raised in our breeding

colony, weighing 280–310 g at the start of the experiment,
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were used in the experiments. Animals were maintained on

a 12-h light/12-h dark cycle with light onset at 07:00 h.

Animals had free access to food and water. All testing was

conducted between 10:00 and 16:00 h.

2.2. Procedure

Animals were injected either with ketamine hydro-

chloride (160 mg/kg ip, 50 mg/ml; Parke-Davis) or with

an equivalent volume of physiological saline and individu-

ally tested in forced-swim tests beginning 3, 7, or 10 days

after treatment. The procedures in the study were according

to the NIH Guide for Care and Use of Animals.

2.3. Forced-swim tests

Animals were tested in two forced-swim tests separated

by 24 h. In the first test, each animal was immersed in water

for 15 min, followed 24 h later by a 5-min second swim test.

For the swim tests, the subject was placed in a Plexiglas

cylinder (45 cm height, 30 cm diameter) filled with 25 �C
water to a height of 15 cm. After the test, the animal was

placed under a lamp for 30 min for drying.

2.4. Behavioral coding and data analysis

Swim tests were recorded on videotape. The initial

5 min of the first test as well as the entire second test

was analyzed. Specifically, for each test, total duration of

immobility was measured. Immobility was defined as

floating or remaining motionless without leaning against

the wall of the cylinder. In addition, frequency of diving

(involving total immersion of the body in water), jumping

(attempt at escape from the cylinder with at least the upper

half of the body out of water), and head shakes were

counted. Data were analyzed with a one-way analysis of

variance (ANOVA).

3. Results

Fig. 1 shows duration of immobility (mean ± S.E.M.) in

the two swim tests. ANOVA comparing immobility scores

for the first swim test indicated no significant effect of

treatment [F(1,49) = 0.41, P > .05] or of day (day of testing

after drug administration) [F(2,49) = 0.08, P>.05] or a

significant Treatment�Day interaction [F(2,49) = 1.10,

P>.05]. In the second swim test, ketamine-treated animals

had significantly shorter duration of immobility than saline

controls [F(1,49) = 5.30, P < .05]. There was no significant

effect for day of testing [F(2,49) = 0.07, P>.05] nor a

significant Treatment�Day interaction [F(2,49) = 0.09,

P>.05].

ANOVA also indicated that the increase in the duration

of immobility in the second swim test compared to the first

test was significantly smaller for the ketamine-treated ani-

mals than saline controls [F(1,49) = 9.39, P < .05]. There

was no significant difference between the groups due to day

of testing [F(2,49) = 0.50, P>.05] nor a significant inter-

action effect [F(2,49) = 0.94, P>.05].

3.1. Other behaviors

Table 1 shows the frequencies (mean ± S.E.M.) of diving,

jumping, and head shakes in the two swim tests. There was

Fig. 1. Duration of immobility (mean ± S.E.M.) in two forced-swim tests (FST1 and FST2) conducted 24 h apart beginning 3, 7, or 10 days after a single

ketamine (160 mg/kg ip) or saline injection. Each group had nine subjects except 7-day saline and ketamine groups (n= 8 and 10, respectively) and 10-day

saline group (n= 10).
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no significant main effect due to treatment or day of testing

after injections or a significant Treatment�Day interaction

for any of these behaviors (P>.05 in all cases).

4. Discussion

In the behavioral despair model, depression is defined

as increased immobility observed in the second of two tests

separated by 24 h (Porsolt et al., 1977, 1978). According to

this criterion, our results suggest that an anesthetic dose of

ketamine in male Wistar rats interferes with induction of

behavioral despair for up to 10 days after its administra-

tion. The observed ameliorative effect of ketamine seems

to be specific to behavioral despair and not due to a

general arousal or hyperactivity in that other behaviors

measured in the swim tests, namely diving, jumping, and

head shakes, did not show a significant treatment- or time-

dependent variability. This argument is bolstered by the

fact that saline- and ketamine-administered animals showed

similar levels of immobility in the first swim test and

differed from each other significantly only in the second

swim test.

The ameliorative effect of ketamine on behavioral des-

pair lends support to the view that implicates an NMDA

receptor-mediated involvement of glutamatergic system in

the pathophysiology of depression (Papp and Moryl, 1994;

Skolnick et al., 1996; Trullas and Skolnick, 1990). Our

findings are also consonant with the report by Berman et al.

(2000) that a single intravenous treatment with ketamine

(0.5 mg/kg) induced significant improvement in depressive

symptoms in humans that were evident for 72 h. The same

study also reported a lasting effect of ketamine in mood

improvement that returned to baseline levels only 1–2 weeks

after treatment.

The prolonged beneficial effect of ketamine in the

present study may be due to a long-term change in

glutamatergic activation and its consequences. O’Neill

and Sanger (1999) have shown that a single pretreatment

with MK-801, an NMDA antagonist, induces an enduring

sensitivity to the second administration of the same

stimulant 4, 7, or 14 days later. It is possible that the

anesthetic dose of ketamine in the present study may

have induced a prolonged change in the animal’s respon-

sivity to forced-swim tests by altering neurochemical

activity in the circuitry mediating immobility in the

forced-swimming such as the frontal cortex, hippocampus,

and the amygdala (Araki et al., 1985; Connor et al.,1997;

Duncan et al.,1986; Jordan et al.,1994; Kawashima

et al.,1990; Nowak et al.,1996; Przegalinski et al.,1997;

Skolnick et al.,1996). Recent studies that have uncovered

a long-term change in NMDA receptor activity in

response to various antidepressant treatments suggest that

altered glutamatergic activation may constitute the final

common pathway for action of antidepressants in alle-

viating depressive behavior in rodents (Nowak et al.,1998;

Skolnick et al.,1996; Trullas and Skolnick, 1990). These

studies target the hippocampus and the frontal cortex,

particularly the latter, as neural substrates involved in

altered glutamatergic activation (Moghaddam, 1993;

Nowak et al.,1996). Ketamine modulates dopaminergic

and serotonergic levels in the brain, particularly in the

frontal cortex (Duncan et al., 1998; Hammer and Herken-

ham, 1983; Lannes et al.,1991; Lindefors et al.,1997;

Moghaddam et al.,1997), which have been implicated in

behavioral despair and swim stress (Claustre et al., 1986;

Connor et al., 1997; Detke and Lucki, 1996; Jordan et al.,

1994). Moreover, microinjections of glutamate in the

prefrontal cortex has been shown to aggravate learned

helplessness in rats 1 and 72 h, but not 24 h, after drug

administration (Petty et al., 1985). Since glutamatergic

activation of the frontal cortex exacerbates learned help-

lessness, an animal model of depression that is related to

behavioral despair (Willner, 1990), depression of gluta-

matergic activity in the frontal cortex as a consequence of

ketamine administration may account for the present

beneficial results.
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Table 1

Frequencies (mean ± S.E.M.) of diving, jumping, and head shakes in two forced-swim tests (FST1 and FST2) conducted 24 h apart beginning 3, 7, or 10 days

after a single ketamine (160 mg/kg ip) or saline injection

Diving Jumping Head shakes

Test Groups Ketamine Saline Ketamine Saline Ketamine Saline

FST 1 3-day 3.3 ± 0.7 2.3 ± 0.6 5.5 ± 1.5 6.0 ± 1.8 34.1 ± 3.5 27.3 ± 3.4

7-day 3.4 ± 0.8 3.0 ± 0.8 12.6 ± 2.9 5.1 ± 1.8 27.9 ± 2.1 24.6 ± 3.2

10-day 2.2 ± 0.7 4.5 ± 0.9 5.3 ± 1.6 5.4 ± 1.7 28.4 ± 3.5 36.1 ± 5.4

FST 2 3-day 2.4 ± 0.8 1.2 ± 0.4 6.0 ± 2.3 5.2 ± 2.6 24.0 ± 3.0 18.8 ± 3.9

7-day 1.7 ± 0.4 1.5 ± 0.5 6.9 ± 3.0 6.6 ± 3.1 12.8 ± 2.4 17.2 ± 3.3

10-day 2.1 ± 0.7 2.5 ± 0.7 7.3 ± 2.1 6.4 ± 1.7 20.2 ± 3.3 26.3 ± 5.1

Each group had nine subjects except 7-day saline and ketamine groups (n= 8 and 10, respectively) and 10-day saline group (n= 10).
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